

01

Hyaluroni Acid crosslinking technology

Filler structure is made through cross-link

If you do not cross-link hyaluronic acid, it will not be supported and maintained as a filler.

Through cross link

As a Hyaluronic acid (HA) filler, it forms a rigid support and difficult to melt structure

To produce Filler: Appropriate cross-link manufacturing technology is required,
The company that secured this with unique technology is a manufacturer specialized in filler

Hyaluroni Acid crosslinking technology

Pendant phenomenon in BDDE among crosslinking agents

Recently known problems with BDDE crosslinked products.

Figure 2. When dissolved in water, hyaluronic acid (HA) behaves as a fluid, with excellent biocompatibility but poor mechanical properties (A). Modification of HA molecules by cross-linking improves mechanical properties by creating gels that have a firmer structure and are able to resist degradation (B). Modification does not necessarily cross-link HA to other HA molecules, resulting in a pendant cross-linker (C). Such structures often result in softer gels.

ORIGINAL ARTICLES

.

Comparative Physical Properties of Hyaluronic Acid Dermal Fillers

Jeffrey Kablik, * Gary D. Monheit, $\rm MD,^{\dagger t}$ LiPing Yu, PhD, * Grace Chang, * and Julia Gershkovich *

Pendant effect

- The phenomenon in which the crosslinks to be bonded on both sides are bonded only to one side Causes: increasing these factors
 Increasing HA to increase viscosity
 Increasing crosslinking efficiency
 Using higher MW

▶ Weakens long lasting of the filler

▶ Modifies HA and can cause side effects

Many products that imitate BDDE technologyface Pendent problems

Determination of modification degree in BDDE-modified hyaluronic acid hydrogel by SEC/MS

Biao Yang ^a, Xueping Guo ^{a, b, e}, Hengchang Zang ^a, Jianjian Liu ^b

^a School of Paurmaceutical Science, Shandong University, Jinan, China

02

Hyaluroni Acid crosslinking technology

PCCL tecnology

Maximized the viscosity of the cross-linked HA by applying the patented 3-staged micro bead process.

Existing Cross-linking technology

Ultrafine bead divided by molecules

New bead united by ultrafine beads

Another bead united by new beads

GRUA

.

CONTENT	OTHER	GROA	
Cross-link agents	BDDE	TCRPG	
Particle Manufacturing method	Gel Smash Method	Micro Bead Manufacturing method	
Product Characteristics	Bi-Phasic	Mono-Phasic	

Hyaluroni Acid crosslinking technology

Comparison of Cross Link Agent (BDDE Vs DVS)

If you do not cross-link hyaluronic acid, it will not be supported and maintained as a filler.

CONTENT	BDDE	TCRPG	
Chemical Name	1,4-Butanediol diglyceryl ether	Divinyl Sulfone	
Structure	\$_0_0_0_0_0_0_0_0_0_0	O CH ₂ S H ₂ C Ö	
Molecular Weight (Dalton)	202,25	118.15	
Molecule length (Ratio)	3 (If)	1 (then approx. 1/3)	
The number of atoms forming a bridge between HA molecules	14 units (Possibility of surplus atoms↑)	5 units	
Manufacturing characteristics	Easy to process / loose crosslinking	Process Difficult / Dense Crosslinking	
Crosslinking degree	Due to incomplete crosslinking Pendent phenomenon occurs	Complete crosslinking	
Cross-Link			

03

Quality Characteristic

Great Moldability

GROA results in a superior outcome compared to other companies

Photo of Viscosity test (after 4 mins, at 36.5°C) vertical Glass

It can be seen that the product has excellent viscoelasticity

Does not flow down by gravity after human injection

Does not scatter or move down due to massage

It is a product that stays for a long time in the desired treatment area.

Quality Characteristic

Long lasting HA Filler? Patented PCCL* technology

GROA in Semi-solid Gel state

Possible to form the highest viscosity mass gel

Comparison to conventional products that claim to have produced a long lasting HA filler

Most companies claim to have successfully manufactured a long lasting HA filler by increasing the cross-linking rate. However, due to limitations in the cross-linkingtechnology these products instead ave only increased viscosity and particle size, which does not contribute to a long lasting HA filler. Moreover, products that have only raised viscosity does not show good moldability.

*PCCL: Multi Staged Crosslinking

04

quality characteristic

Safe & Removable

The product is safe with no chemical modifications in the HA, even after high cross-linking process.

The wavelength pattern of GROA is the same as its raw material, showing that the product has not altered its physical properties.

We can see how our product easily dissolves with hyaluronidase.

05

quality characteristic

Superior hydrophilic capacity

Our product provides excellent volume effect through its high hydrophillic capacity and stable molecular structure even after high cross-linking rate.

Comparison of moisture retention

Centrifugation at 3,000 rpm for 30 minutes (Status: 500cc of water added to a sample of 1cc)

- → Shows higher volume effect compared to other fillers of same amount
- → Excellent volumizing effect and easy molding even with a small amount

.

Specification

UTW [Ultra thin wall needle]:
The ultra thin wall needle has a larger inner diameter compared to regular needles.
It improves flow rates and lowers extrusion force during injection.

Product	Cross-linking Level	Gel Texture	Concentration	Needle	Treatment Area
GROA FINE	NON cross-linking		20 mg / ml (0.9% mannitol)	30G x 1/2" (13mm)	Frown Lines Lip Contour Crow's Feet Smile Lines Glabella Lines
GROA DEEP	•000		20 mg / ml	27G x 1/2" (13mm)	Deep Facial Lines Lips Nose Nasolabial Folds Marionette Lines Mouth Frown Cheekbones
GROA VOLUME	••00		20 mg / ml	23G x 1/2" (13mm)	Chin Augmentation Nose Bridge Chin Mid Cheek Malar Areas
GROA S GROY	•••		20 mg / ml	21G x 1/2" (50mm)	Hands
GROA H	••••		20 mg / ml	18G x 1/2" (70mm)	Buttocks Calves Correction of Concave Deformities

Product application part

GROA allows a precise procedure for specific areas, and ensures a safe and effective result.

